

Work

- The work done on a system by a constant force is defined to be the product of the component of the force in the direction of motion and the distance through which the force acts.

$$
W=F_{\|} d
$$

Units: Joules (J)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

- A 50.0 kg crate is pulled 40.0 m along a
\qquad
\qquad horizontal floor by a constant force of 100.0 N at an angle of 37° from the \qquad horizontal. Calculate the work done on the crate.

$$
\begin{aligned}
& W=F d \cos \theta \\
& W=(100)(40) \cos 37 \\
& W=3190 \mathrm{~J}
\end{aligned}
$$

- If more than one force acts on an object, the net work is calculated using the net force.

- If the force varies, then the work must be calculated from the area under a force vs. displacement curve.

Energy

- When work is done on a system, energy is added to the system.
- The energy could be stored (potential energy) or cause motion (kinetic energy).
- Work done by friction leaves the system in the form of heat.

\qquad
- The net force arises from the applied force $F_{\text {app }}$ and the friction force F_{f}.
- Since the net force is parallel to the displacement, the net work is

$$
W_{\text {net }}=F_{\text {net }} d
$$

- The result of the net force is an acceleration from v_{0} to v.
- The kinetic energy will increase.
- Substituting for $F_{\text {net }}$ gives

$$
W_{\text {net }}=\operatorname{mad}
$$

- We can use a kinematic equation to substitute for acceleration.

$$
\begin{gathered}
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \quad x-x_{0}=d \\
a=\frac{v^{2}-v_{0}^{2}}{2 d} \\
W_{\text {net }}=m\left(\frac{v^{2}-v_{0}^{2}}{2 d}\right) d
\end{gathered}
$$

- Rearranging this equation gives

$$
W_{n e t}=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}
$$

- This expression is called the work-energy theorem, and it applies even for forces that vary in direction and magnitude.
- The theorem implies that the net work on a system equals the change in the quantity $\frac{1}{2} m v^{2}$.
- The quantity $\frac{1}{2} m v^{2}$ in the work-energy theorem is defined to be the translational kinetic energy.

$$
E_{k}=\frac{1}{2} m v^{2}
$$

- Kinetic energy is a form of energy associated with the motion of a particle, single body, or system of objects moving together.

Example

- A 145 g baseball is thrown with a
\qquad
\qquad speed of $25 \mathrm{~m} / \mathrm{s}$.
a) What is the kinetic energy of the ball?
b) How much work was done on the ball to make it reach this speed if it started from \qquad rest?
a) $K=\frac{1}{2} m v^{2}$
$K=\frac{1}{2}\left(145 \times 10^{-3}\right)(25)^{2}=45 \mathrm{~J}$
b) $\quad W_{\text {net }}=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}$
$W_{\text {net }}=45 \mathrm{~J}$

- The change in gravitational potential energy depends only on the change in height and not on the path.

$$
\Delta E_{g}=m g h
$$

- This expression applies for small distances where the value of g remain constant.
- We need an expression that works over distances such that g is not constant.
- This is necessary to correctly calculate the energy needed to place satellites in orbit or to send them on missions in space.
- We can calculate the work done (and thus potential energy) by finding the area under a force vs distance curve.

\qquad
- We define gravitational potential energy as

$$
E_{g}=-\frac{G M m}{r}
$$

- Note:
- Force at an infinite distance is 0 .
- Therefore, potential energy at an infinite distance must be 0 .
- Potential energy decreases as the distance decreases.

Escape Velocity

- The velocity necessary to escape the \qquad gravitational field of a planet (or any massive object). \qquad
\qquad
\qquad
\qquad
\qquad

Calculating Escape Velocity

- The total energy of a moving object, m, \qquad near a large stationary mass, M, is

$$
E_{\text {total }}=\frac{1}{2} m v^{2}-G \frac{m M}{r}
$$

\qquad
\qquad

- A long distance away (∞), the object will only have kinetic energy. \qquad
- On the surface of M, the object will only have gravitational potential energy.
- If the total energy is
- >0, the mass escapes and never returns.
- <0, the mass moves out a certain distance but is pulled back.
- $=0$, the mass just escapes.
- The escape velocity is the velocity required to just escape the gravitational force of the Earth.
- Total energy equals zero.

$$
\frac{1}{2} m v^{2}-G \frac{m M}{r}=0
$$

- The velocity is the escape velocity.

$$
v=\sqrt{\frac{2 G M}{r}}
$$

- The escape velocity can also be given in terms of gravitational field strength.

$$
\begin{gathered}
g=G \frac{M}{r^{2}} \\
v=\sqrt{2 g r}
\end{gathered}
$$

Example

- Calculate the escape velocity from the \qquad surface of the earth.
- $m_{\text {earth }}=5.98 \times 10^{24} \mathrm{~kg}$ \qquad
- $r_{\text {earth }}=6.38 \times 10^{6} \mathrm{~m}$

$\frac{1}{2} m v^{2}-G \frac{m M}{r}=0$	
$v=\sqrt{\frac{2 G M}{r}}$	$v=\sqrt{2 g r}$
$v=\sqrt{\frac{2\left(6.67 \times 10^{-11}\right)\left(5.98 \times 10^{24}\right)}{6.38 \times 10^{6}}}$	$v=\sqrt{2(9.8)\left(6.38 \times 10^{6}\right)}$
$v=1.1 \times 10^{4} \mathrm{~m} / \mathrm{s}$	$v=1.1 \times 10^{4} \mathrm{~m} / \mathrm{s}$

Potential Energy

- Potential energy is the energy a system has due to position, shape, or configuration.
- It is stored energy that is completely recoverable.

Conservative Forces

- A conservative force is one for which work \qquad done by or against it depends only on the starting and ending points of a motion and \qquad not on the path taken.
- We can define a potential energy for any \qquad conservative force.
- The work done against a conservative force to reach a final configuration is the \qquad potential energy added.

Elastic Potential Energy

- The work done to stretch a spring a distance x is $W=F x$.
- However, the force is not constant.
- Hooke's law: $\vec{F}_{s}=-k \vec{x}$
- The work, therefore, is the area under the force vs displacement curve for the spring.

The potential energy is the work done on the spring.

$$
E_{s}=\frac{1}{2} k x^{2}
$$

Conservation of Mechanical
 Energy

- The work-energy theorem states that the net work done by all forces acting on a system equals its change in kinetic energy.
- If a conservative force, such as the gravitational force or a spring force, does work, the system loses potential energy.

$$
\begin{array}{cc}
\text { - Therefore } & -\Delta U=\Delta K \\
K_{i}+U_{i} & \stackrel{\text { or }}{ }=K_{f}+U_{f}
\end{array}
$$

- This means that the total kinetic and potential energy is constant for any process involving only conservative forces.
- This is known as the conservation of mechanical energy principle.
- The total kinetic plus potential energy of a system is defined to be its mechanical energy.
\qquad

Example

- A 500 g ball is rolled along a level surface with a speed of $3.0 \mathrm{~m} / \mathrm{s}$. It goes up a 0.25 m ramp and compresses a spring ($\mathrm{k}=20.0$) a distance x. Calculate x.

\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{gathered}
K_{i}+U_{i}=K_{f}+U_{f} \\
\frac{1}{2} m v^{2}=m g \Delta y+\frac{1}{2} k x^{2} \\
x=\sqrt{\frac{\frac{1}{2} m v^{2}-m g \Delta y}{\frac{1}{2} k}} \\
x=\sqrt{\frac{\frac{1}{2}(0.5)(3)^{2}-(0.5)(9.8)(0.25)}{\frac{1}{2}(20)}}=0.32 \mathrm{~m}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nonconservative Forces

- A nonconservative force is one for which \qquad work depends on the path taken.
- Friction is a nonconservative force.
- Work done against friction depends on the length of the path between the starting and ending points.

- Because of this dependence on path, there is no potential energy associated with nonconservative forces.
- Work done by a nonconservative force adds or removes mechanical energy from a system.
- Friction creates thermal energy that dissipates, removing energy from the system.
- Furthermore, even if the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense as well.
- When nonconservative forces are acting on the system the work-energy theorem \qquad states that the change in mechanical energy is equal to the work done by the
\qquad nonconservative forces.

$$
\begin{gathered}
W_{n c}=\Delta K+\Delta U \\
\text { or } \\
K_{i}+U_{i}+W_{f}=K_{f}+U_{f}
\end{gathered}
$$

Example

- A 1.0 kg box slides up a 10° ramp. The box has an initial velocity of $2.5 \mathrm{~m} / \mathrm{s}$ and the force of friction between the box and ramp is 5.0 N . Calculate the distance the box slides up the ramp.

$$
\begin{gathered}
K_{i}+U_{i}+W_{f}=K_{f}+U_{f} \\
\frac{1}{2} m v^{2}-F_{f} d=m g h \\
\frac{1}{2} m v^{2}-F_{f} d=m g d \sin \theta \\
d=\frac{\frac{1}{2} m v^{2}}{m g \sin \theta+F_{f}} \\
d=\frac{\frac{1}{2}(1)(2.5)^{2}}{(1) 9.8 \sin 10+(5)}=0.47 \mathrm{~m}
\end{gathered}
$$

Law of Conservation of Energy

- Total energy is constant in any process. It \qquad may change in form or be transferred from one system to another, but the total \qquad remains the same.

$$
\Sigma E_{i}=\Sigma E_{f}
$$

Power

- Power is the rate at which work is done.

$$
P=\frac{W}{\Delta t}
$$

- Since work is energy transfer, power is also the rate at which energy is expended.

$$
P=\frac{\Delta E}{\Delta t}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Units: Watts (W)

Example

What is the power output for a 60.0 kg woman
\qquad
\qquad who runs up a 3.00 m high flight of stairs in 3.50s, starting from rest but having a final speed of $2.00 \mathrm{~m} / \mathrm{s}$?

$$
\begin{gathered}
P=\frac{\Delta E}{\Delta t} \quad \Delta E=\left(K_{f}+U_{f}\right)-\left(K_{i}+U_{i}\right) \\
P=\frac{K_{f}+U_{f}}{\Delta t}=\frac{\frac{1}{2} m v^{2}+m g \Delta y}{\Delta t} \\
P=\frac{\frac{1}{2}(60)(2)^{2}+(60) 9.8(3)}{(3.5)}=538 \mathrm{~W}
\end{gathered}
$$

Efficiency

- Even though energy is conserved in an energy conversion process, the output of useful energy or work will be less than the energy input.
- The efficiency of an energy conversion process is defined as

Efficiency $=\frac{\text { useful energy or work output }}{\text { total energy in }}=\frac{W_{\text {out }}}{E_{\text {in }}}$

